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Abstract. Cross-Domain Recommendation (CDR) has been proved
helpful in dealing with two bottlenecks in recommendation scenarios:
data sparsity and cold start. Recent research reveals that identify-
ing domain-invariant and domain-specific features behind interactions
aids in generating comprehensive user and item representations. How-
ever, we argue that existing methods fail to separate domain-invariant
and domain-specific representations from each other, which may con-
tain noise and redundancy when treating domain-invariant represen-
tations as shared information across domains and harm recommen-
dation performance. In this paper, we propose a novel Disentangled
Contrastive Learning for Cross-Domain Recommendation framework
(DCCDR) to disentangle domain-invariant and domain-specific represen-
tations to make them more informative. Specifically, we propose a sepa-
rate representation generation component to generate separate domain-
invariant and domain-specific representations for each domain. Next, We
enrich the representations through multi-order collaborative information
with GNNs. Moreover, we design a mutual-information-based contrastive
learning objective to produce additional supervision signals for disen-
tanglement and enhance the informativeness of disentangled represen-
tations by reducing noise and redundancy. Extensive experiments on
two real-world datasets show that our proposed DCCDR model outper-
forms state-of-the-art single-domain and cross-domain recommendation
approaches.

Keywords: Cross-domain Recommendation · Contrastive Learning ·
Disentangled Representation Learning · Graph Convolutional Networks

1 Introduction

Recommender systems have become key components for e-commerce and social
media platforms, assisting users in accurately finding items they are potentially
interested in amid overloaded information [36]. With the number of new items
and users increasing, data sparsity and cold-start become two important issues
hurting the efficacy of traditional recommender systems. Cross-domain recom-
mendation (CDR) appears to be a solution to these two bottlenecks [35,42].
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Existing CDR approaches generally leverage rich information (i.e., ratings,
feedback, tags, reviews) from source domains to improve recommendation per-
formance in a target domain. Collective matrix factorization (CMF)-based meth-
ods [17,23,31] generate shared representations of users and items. Embedding
and mapping-based methods [20] utilizing embedding mapping and dual knowl-
edge transfer-based methods [9,14,15,40] have demonstrated efficacy in shar-
ing knowledge across domains. Graph neural networks (GNNs)-based methods
[4,12,32,37,41] in CDR utilize high-order collaborative information to improve
performance. However, these methods consider that users have consistent inter-
ests across domains, so they only directly share common features when gen-
erating user representations, which ignores users may have different interests
across domains. Recent approaches [3,10,16,33,38] consider domain-invariant
and domain-specific features that are shared and distinct across domains [25].
They initialize two separate embeddings to represent domain-invariant and
domain-specific features and transfer shared knowledge across domains to learn
domain-invariant and domain-specific representations. Nonetheless, they fail to
generate informative representations containing diverse semantics as it is difficult
to distinguish between these two kinds of highly entangled features.

It is critical to separate domain-invariant and domain-specific representations
from each other to enable them to contain more diverse semantic information.
However, for existing CDR methods that identify domain-invariant and domain-
specific features, their generated representations may have two main limita-
tions as shown in Fig. 1, First, the domain-invariant representations may involve
domain-specific features, which introduces noise caused by domain-specific fea-
tures when treating domain-invariant representations as shared information to
transfer, leading to the negative transfer problem [35]. Second, the domain-
invariant and domain-specific representations may have some redundancy rep-
resenting identical features, which decreases their expression ability greatly and
results in sub-optimal results. Therefore, our method wants to separate domain-
invariant and domain-specific representations to obtain more informative repre-
sentations without noise and redundancy.

To reduce noise and redundancy contained in the generated domain-invariant
and domain-specific representations and improve their informativeness, we are
faced with the following challenges. The first challenge is how to distinguish
between domain-invariant and domain-specific features from user-item interac-
tions. Generally, user-item interactions are explicit ratings or implicit feedback in
the datasets, so domain-invariant and domain-specific features behind user-item
interactions are highly entangled, which makes it difficult to disentangle them.
The second challenge is how to enhance the informativeness of domain-invariant
and domain-specific representations. If domain-invariant and domain-specific rep-
resentations are obtained, they may involve noise caused by irrelevant features,
which hinders the effectiveness of sharing knowledge across domains and hurts
recommendation performance. The generated representations may have some
redundant information, which reduces the informativeness of representations.
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Fig. 1. Existing CDR models generate domain-invariant and domain-specific repre-
sentations which contain noise and redundancy, whereas our methods generate more
informative representations.

Therefore, it is difficult to remove noise and redundancy from the generated rep-
resentations to make them more informative.

In this paper, we develop a new model called Disentangled Contrastive
Learning for Cross-Domain Recommendation (DCCDR) to disentangle domain-
invariant and domain-specific representations. To tackle the aforementioned chal-
lenges, we propose a disentangled contrastive learning module to generate more
informative domain-invariant and domain-specific representations. To address
the first challenge, we develop a separate representation generation component
to generate separate domain-invariant and domain-specific representations. To
enrich representations, we perform a GNNs-based approach to utilize high-order
collaborative information in the user-item interaction graph. To deal with the
second challenge, we develop a representation informativeness enhancement com-
ponent to supervise the disentanglement and enhance the informativeness of
representations by reducing noise and redundancy. Specifically, the contrastive
learning objective maximizes the mutual information between domain-invariant
representations of users across domains to reduce noise. To make disentangled
representations contain more diverse semantics, the objective minimizes the
mutual information between domain-invariant and domain-specific representa-
tions within domains and that between domain-specific representations across
domains. Finally, we concatenate the domain-invariant and domain-specific rep-
resentations to generate the final ones and predict the probability of given user-
item pairs. In summary, the main contributions of this paper are as follows:

– We emphasize the importance of distinguishing domain-invariant and domain-
specific features in cross-domain recommendation. A novel model DCCDR is
proposed to disentangle domain-invariant and domain-specific representations
to enable them to be more informative and contain diverse semantics.

– We develop the representation informativeness enhancement to supervise
the disentanglement and enhance the informativeness of disentangled rep-
resentations by reducing noise and redundancy. A mutual-information-based
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contrastive learning objective is designed to add supervision signals for model
training and representation enhancement.

– We conduct extensive experiments on real-world Amazon and Douban
datasets. Comprehensive results demonstrate that our model significantly
outperforms the state-of-the-art methods of cross-domain recommendation.

2 Related Work

2.1 Cross-Domain Recommendation

Cross-domain recommendation (CDR), which takes advantage of the abundant
knowledge in source domains, often improves recommendation performance in
a sparse target domain. Traditional approaches factorize rating matrices jointly
and capture common user preferences [17,23]. As deep learning techniques gain
popularity, methods use mapping functions [20], domain adaption skills [5,34],
dual knowledge transfer mechanism [9,14,40], and graph neural networks (GNNs)
[4,12,32,37,41] to transfer or leverage shared knowledge across domains. Recent
approaches consider domain-invariant and domain-specific features when shar-
ing knowledge across domains [3,10,16,33,38]. For instance, Zhao et al. propose
MSDCR [38] to learn domain-specific and domain-invariant user preferences at the
aspect level by transferring the user’s complementary aspect preferences across
domains. However, existing CDR approaches fail to separate domain-invariant
and domain-specific representations from each other, which introduces noise and
redundancy. Unlike prior research, Our DCCDR aims to disentangle domain-
invariant and domain-specific representations to enhance their informativeness.

2.2 Disentangled Learning in Recommendation

Disentangled Learning [1] is proposed to learn distinct representations from mul-
tiple latent factors that influence the data, which is well aligned with recommen-
dation tasks. Disentangled learning has proved effective in single-domain recom-
mendation [18], sequential recommendation [19,39], and social recommendation
[13] Researchers have shown that GNNs are effective to learn disentangled repre-
sentations from graphs for recommendation. GNN-based disentangled methods
leverage the interaction graph [26], the heterogeneous graph [27], and the knowl-
edge graph [29]. Recently, learning disentangled representations has been intro-
duced in CDR tasks [2]. Yet, the aforementioned works fail to separate domain-
invariant and domain-specific representations from each other and enhance their
informativeness, which leads to sub-optimal recommendation performance in
CDR. These short-comings can be addressed by our proposed DCCDR model,
which disentangles domain-invariant and domain-specific representations with
generated supervised signals to make them contain more diverse semantics.

3 Notations and Problem Definition

Let DA and DB denote two distinct domains which share the same set of users
denoted as U . IA and IB denote non-overlapped sets of items in domain DA
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Fig. 2. An architecture overview of our model DCCDR. The core module of DCCDR
is the Disentangled Contrastive Learning Module, which contains three key compo-
nents: (1) the Separate Representation Generation, (2) the Representation Enrichment,
and (3) the Representation Informativeness Enhancement.

and DB , among which no item is in common. |U|, |IA|, and |IB | are the number
of shared users and items in each domain. GA = (U , IA, RA) and GB =
(U , IB, RB) denote the interaction graph in DA and DB separately, where
RA ∈ R

|U|×|IA| and RB ∈ R
|U|×|IB | are user-item interaction matrices. Rui = 1

indicates an observed interaction between the user u and item i, otherwise 0.
With two domains DA and DB and a set of common users U , two sets of non-

overlapped items IA, IB, and corresponding interaction matrices RA and RB

given, We consider Top-N recommendation with implicit feedback for all users
in each domain. That is to say, we recommend a set of items Ia ⊂ IA, Ib ⊂ IB

that users have not interacted with but are most likely to be interested in to
improve the recommendation performance in both domains simultaneously.

4 DCCDR

The main structure of our Disentangled Contrastive learning networks for Cross-
Domain Recommendation (DCCDR) is shown in Fig. 2, which contains the input
layer, the disentangled contrastive learning module and the prediction layer. In
the following, we will introduce it in detail.
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4.1 Input Layer

Considering that two domains share the same user set, the inputs of our proposed
DCCDR model in the two domains are the user-item pairs (u, iA) and (u, iB).
We denote both users and items by one-hot encodings, i.e., xu ∈ {0, 1}|U|, xiA ∈
{0, 1}|IA|, xiB ∈ {0, 1}|IB|. We generate the initialized embeddings through
embedding matrices EUA ,EUB ,EIA ,EIB :

eA,0
u = ET

UAxu, eB,0
u = ET

UBxu, e0iA = ET
IAxiA , e0iB = ET

IBxiB , (1)

where EUA ∈ R
|U|×d,EUB ∈ R

|U|×d,EIA ∈ R
|IA|×d,EIB ∈ R

|IB|×d, e0u and e0i
denote the generated initial embeddings of the user u and the item i respectively,
and d is the dimension of all embeddings.

4.2 Disentangled Contrastive Learning Module

This module is the core of our proposed DCCDR model, which aims to dis-
entangle domain-invariant and domain-specific representations to make them
more separate and informative. It is crucial to disentangle to reduce noise
caused by irrelevant features when sharing domain-invariant representations
across domains. It will also help to reduce the redundancy of these two rep-
resentations to obtain informative representations with more diverse semantics.
There are three problems faced with the disentanglement. The first one is how
to extract domain-invariant and domain-specific features and generate two sepa-
rate representations. The second one is how to leverage collaborative information
to enrich representations. The third one is how to enhance the informativeness
of disentangled representations. We propose a separate representation genera-
tion component, a representation enrichment component and a representation
informativeness enhancement component to tackle these problems.

Separate Representation Generation. We employ latent space projection to
generate separate domain-invariant and domain-specific representations. Specif-
ically, for the user u, different from other recommendation methods [9,23,40]
which capture a uniform user interest and generate a holistic representation,
we extract domain-invariant and domain-specific features as two independent
parts of user interest. Formally, we project the original user embedding e0u into
different latent spaces:

hd,(0)
u = σ(Wd

Ue
0
u), hs,(0)

u = σ(Ws
Ue

0
u), (2)

where d and s denote the domain-invariant and domain-specific latent space
respectively, WU is the projection matrix and σ(·) is the activation func-
tion. The representations of each u would be composed of two parts, i.e.,
e(0)u = [hd,(0)

u , hs,(0)
u ], where hd,(0)

u and hs,(0)
u denote the domain-invariant and

domain-specific representation of the user u. Analogously, we can generate sep-
arate representations hd,(0)

i , hs,(0)
i for item i.
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Representation Enrichment. To enrich the representations, we leverage high-
order collaborative information in the interaction graphs due to the effectiveness
of GNNs [6,11,24] proved in recent studies. Research has shown that applying
the embedding propagation mechanism on graph structure can extract useful
information by aggregating information from neighbors and updating original
nodes. The basic idea of Graph Convolutional Networks (GCNs) [11] is to learn
node representations by smoothing features over the graph. It performs the fol-
lowing neighborhood aggregation iteratively to achieve a new representation of
a target user node u with K convolutional layers:

e(k+1)
u = AGG(e(k)u , e

(k)
i : i ∈ Nu), (3)

where k indicates the current convolutional layer, e
(k)
u denotes the user embed-

ding in the kth layer, Nu is the set of neighbors of u in the interaction graph
and AGG symbolizes the chosen aggregation strategy.

We adopt LightGCN [7] to enrich domain-invariant and domain-specific rep-
resentations in each domain due to its low number of parameters. Take the
domain-invariant representations in domain DA as an example and the aggre-
gation for a user u and an item iA can be summarized as follows:

hd,A,(k+1)
u =

∑

i∈NA
u

1√|NA
u ||Ni|

hd,(k)
i , hd,(k+1)

iA
=

∑

u∈NiA

1√|NA
u ||NiA |h

d,A,(k)
u .

(4)
To achieve more comprehensive representations from multi-order neighbors,

we combine the embeddings learned in each layer since different embedding layers
capture different semantics as follows:

hd,A
u = hd,A,(0)

u || ... || hd,A,(K)
u , hd

iA = hd,(0)
iA

|| ... || hd,(K)
iA

, (5)

where || denotes the concatenation operation. The enrichment of domain-specific
representations can be performed similarly. This enrichment process is the same
for both DA and DB .

Representation Informativeness Enhancement. To supervise the disen-
tanglement and enhance the informativeness of disentangled representations, we
utilize self-supervised learning (SSL) [22,28,30] to generate extra supervision
signals for model training. Specifically, this component adopts the mutual infor-
mation (MI) maximization mechanism [21] to construct a contrastive learning
objective. The core idea of mutual information maximization is to select positive
pairs whose MI should be maximized (i.e., MImax in Fig. 2) and negative pairs
whose MI should be minimized (i.e., MImin in Fig. 2).

To reduce noise caused by irrelevant features when treating domain-invariant
user representations as knowledge to be shared across domains, we treat the two
domain-invariant user representations of the same user as a positive pair and
minimize the difference between them because intuitively users’ domain-invariant
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features are shared and consistent. To reduce redundancy of the disentangled
representations and enhance their informativeness, we propose two negative
pairs for our designed contrastive learning objective. First, if domain-invariant
and domain-specific representations contain distinguishable semantics in each
domain, all the shared knowledge will be squeezed into domain-invariant repre-
sentations. Hence, the domain-specific and domain-invariant representations of
the same user in each domain are treated as a negative pair. Second, based on
the assumption that all the common knowledge is supposed to be represented in
domain-invariant representations, it is convincing that the domain-specific rep-
resentations of users across domains should have little mutual information and
can be considered as another negative pair. Therefore, the contrastive learning
objective is determined as follows:

LCL = −log
exp(f(hd,A

u , hd,B
u ))/τ)

exp(f(hd,A
u , hd,B

u ))/τ) + exp(f(hd,A
u , hs,A

u ))/τ)+
,

exp(f(hd,B
u , hs,B

u ))/τ) + exp(f(hs,A
u , hs,B

u ))/τ)

(6)

where f(·) is a function measuring the mutual information contained in repre-
sentation and τ is a hyper parameter for softmax temperature. Here we utilize
the cosine similarity and other functions can be adopted.

f(hd
u, hs

u) = cos(hd
u, hs

u) =
hd
u
T
hs
u

||hd
u|| ||hs

u|| . (7)

4.3 Prediction Layer

Through the disentangled contrastive learning module, we can obtain disentan-
gled domain-invariant and domain-specific representations for users and items.
To make representations more comprehensive, we adopt a concatenation opera-
tion to fuse the disentangled representations as follows:

eAu = hd,A
u || hs,A

u , eiA = hd
iA || hs

iA , (8)

where eAu and eiA are the final representation for user u and item iA in DA

respectively. Finally, we utilize the dot product to calculate the probability of
the interaction between u and iA in DA:

r̂AuiA = ŷA(u, iA) = σ(eAu
T
eiA), (9)

where σ is the sigmoid function to map real multiplication results to probability
of interactions. Note that r̂BuiB can be achieved through a similar process.

4.4 Model Training

We employ the Bayesian Personalized Ranking (BPR) loss, which is a typical
pairwise loss encouraging a higher predicted probability of an observed interac-
tion compared with unobserved ones.

L′
BPR = −

∑

(u,i)∈R+,(u,j)∈R−
ln σ(r̂ui − r̂uj), (10)
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where ′ denotes the chosen domain DA or DB to estimate corresponding BPR
loss, i.e., LA

BPR and LB
BPR. R+ is the set of observed interactions between users

and items while R− is the sampled set of unobserved interactions. Considering
the determined disentangled contrastive learning objective in Formula (6), the
total joint loss function is defined as follows:

L = LA
BPR + LB

BPR + βLCL + λ||Θ||22, (11)

where β is the weight of LCL and λ controls the L2 regularization on the param-
eter set Θ to prevent overfitting.

5 Experiments

In this section, we discuss the experimental setup. We adopt two real-world
datasets to conduct experiments and demonstrate the effectiveness of the pro-
posed model. We expect to find answers to the following research questions.

– RQ1: Can our proposed model outperform other state-of-the-art approaches?
– RQ2: Do our designs aid in enhancing the performance of our model?
– RQ3: How do various hyper-parameter values affect our performance?
– RQ4: Are the representations we learned really disentangled?

5.1 Experimental Settings

Datasets We use two real-world datasets in our experiments to assess the per-
formance of our proposed approach. The first dataset, Amazon1, is the most
often utilized for CDR. We select four domains for evaluation: “Movies and TV,”
“Digital Music,” “Cell Phones and Accessories,” and “Electronics” (abbreviated
“Amazon-Movie,” “Amazon-Music,” “Amazon-Cell,” and “Amazon-Elec”). The
second dataset is the Douban dataset, which is crawled from the Douban web-
site2, a prominent online social network. There are three domains denoted as
“Douban-Movie”, “Douban-Music” and “Douban-Book”, respectively. For each
dataset, we treat the ratings of 4–5 as positive samples and others as negative
ones, where each interaction is marked as 1 otherwise 0. For each task, we select
the common users across both domains who have more than 3 interactions in
each domain and limit each domain to less than or equal to 10000 items. Table 1
summarizes the detailed statistics of the datasets.

Evaluation Metrics. We adopt the leave-one-out strategy to evaluate our
approach and baselines [40]. We randomly select one interaction as the test item
for each user and determine hyper parameters by randomly sampling another
interaction as the validated item. We randomly choose 999 negative items that
are not interacted with by the user and rank the test item among the combined
1 http://jmcauley.ucsd.edu/data/amazon/.
2 https://www.douban.com.

http://jmcauley.ucsd.edu/data/amazon/
https://www.douban.com
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Table 1. Experimental datasets and tasks.

Dataset Domain #Users #Items #Interaction sparsity

Amazon Movie 6995 10000 215299 99.69%

Music 6995 10000 162779 99.77%

Cell 7988 8455 86784 99.87%

Elec 7988 9513 51398 99.93%

Douban Movie 4494 10000 2038134 95.46%

Book 4494 10000 303329 99.33%

Music 6529 10000 704858 98.92%

Book 6529 10000 467335 99.28%

1000 items because we are interested in the top-N recommendation tasks. This
process is repeated five times, and the average ranking results are displayed. The
recommendation performance is evaluated by two metrics: Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG). HR examines whether the
test item is in the top-N ranking list, and NDCG measures the ranking quality
by assigning higher scores to hits at top ranks [16].

Comparison Methods. We compare our proposed DCCDR model with both
single-domain and cross-domain recommendation methods.

– Single-domain recommendation. NeuMF [8] combines matrix factor-
ization (MF) and Deep Neural Networks (DNNs) to model user-item latent
interactions. LightGCN [7] proposes a simplified neighborhood aggregation
through normalized sum to generate representations.

– Cross-domain recommendation. CMF [23] jointly factorizes matrices
and shares the latent factors of overlapped users. DeepAPF [33] captures
both cross-site common and site-specific interests with weights learned by the
attentional network. CoNet [9] introduces cross-connection units to conduct
a dual knowledge transfer. PPGN [37] constructs a cross-domain preference
matrix to maintain the cross-domain interactions and captures high-order
connections. BiTGCF [16] conducts a bi-direction transfer learning through
graph collaborative filtering. MSDCR [38] enhances domain-specific aspect
preferences through adversarial training to form comprehensive preferences.

Experiment Setup. We use PyTorch to develop DCCDR3, and all experiments
are run on an NVIDIA TITAN Xp GPU. The dimension d of both the user and
item embeddings is set to 64. The number of graph convolutional layers is set
to 3. We set the disentangled contrastive learning objective’s weight β to 0.001.
With a learning rate of 0.001, we use the Adam optimizer in a mini-batch mode
to update parameters. The batch size is set to 1024. Furthermore, to prevent
3 https://github.com/wangshanyw/DCCDR.

https://github.com/wangshanyw/DCCDR
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Table 2. Performance comparison between DCCDR and different methods. Best
baselines are underlined. � indicates the statistical significance for p ≤ 0.01 compared
with the best baseline method based on the paired t-test.

Metric H@2 H@5 N@5 H@2 H@5 N@5 H@2 H@5 N@5 H@2 H@5 N@5

Datasets Amazon-Movie Amazon-Music Amazon-Cell Amazon-Elec

NeuMF 0.045 0.090 0.057 0.064 0.117 0.076 0.051 0.080 0.056 0.047 0.079 0.055

LightGCN 0.120 0.232 0.141 0.150 0.229 0.171 0.141 0.260 0.170 0.155 0.247 0.180

CMF 0.085 0.150 0.101 0.106 0.176 0.124 0.127 0.192 0.141 0.109 0.159 0.119

DeepAPF 0.067 0.119 0.080 0.095 0.151 0.106 0.072 0.112 0.080 0.058 0.095 0.067

CoNet 0.153 0.237 0.170 0.151 0.235 0.169 0.119 0.176 0.132 0.122 0.179 0.135

PPGN 0.178 0.268 0.200 0.241 0.356 0.268 0.307 0.436 0.336 0.202 0.306 0.226

BiTGCF 0.179 0.283 0.204 0.230 0.351 0.257 0.250 0.359 0.272 0.233 0.338 0.258

MSDCR 0.215 0.328 0.245 0.298 0.420 0.311 0.410 0.548 0.422 0.282 0.415 0.310

DCCDR 0.259� 0.376� 0.285� 0.330� 0.471� 0.359� 0.476� 0.616� 0.493� 0.315� 0.465� 0.347�

Improv. 21% 15% 16% 11% 12% 16% 16% 12% 17% 12% 12% 12%

Datasets Douban-Movie Douban-Book Douban-Music Douban-Book

NeuMF 0.088 0.160 0.105 0.092 0.173 0.112 0.096 0.175 0.115 0.097 0.178 0.118

LightGCN 0.093 0.166 0.112 0.135 0.227 0.155 0.122 0.119 0.143 0.119 0.160 0.158

CMF 0.060 0.106 0.070 0.086 0.152 0.101 0.079 0.142 0.096 0.086 0.152 0.103

DeepAPF 0.086 0.160 0.107 0.132 0.225 0.154 0.110 0.197 0.132 0.119 0.203 0.140

CoNet 0.237 0.357 0.265 0.243 0.357 0.264 0.134 0.228 0.170 0.151 0.221 0.186

PPGN 0.097 0.176 0.116 0.149 0.244 0.168 0.122 0.210 0.146 0.128 0.218 0.150

BiTGCF 0.084 0.160 0.105 0.184 0.277 0.203 0.146 0.224 0.167 0.154 0.227 0.176

MSDCR 0.260 0.360 0.285 0.250 0.354 0.275 0.180 0.217 0.190 0.148 0.201 0.163

DCCDR 0.309� 0.386� 0.314� 0.288� 0.375� 0.307� 0.198� 0.241� 0.211� 0.175� 0.238� 0.208�

Improv. 19% 7% 10% 15% 6% 12% 10% 6% 11% 13% 5% 12%

overfitting in graph convolution, we implement the message dropout mechanism
during propagation with a dropout of 0.4 in training and disable it during testing.

5.2 Performance Comparison (RQ1)

Table 2 summarizes the results of our experiments on four tasks using HR@2
(H@2), HR@5 (H@5), and NDCG@5 (N@5). We can see that CDR methods
(such as CMF, CoNet, and MSDCR) outperform single-domain recommendation
approaches in general (i.e. NeuMF). This demonstrates how useful data across
domains help improve recommendation performance. Moreover, in most circum-
stances, GNN-based recommender systems surpass non-graph recommendation
methods (e.g., LightGCN vs NeuMF, PPGN, vs CoNet, etc.). This demonstrates
the efficacy of using the graph to model high-order relationships. Additionally,
among previous methods identifying domain-invariant and domain-specific fea-
tures, MSDCR outperforms other approaches (i.e. DeepAPF, BiTGCF) but is
still weaker than our model, which disentangles domain-invariant and domain-
specific representations from each other to make them more informative. Our
proposed DCCDR model performs optimally on all tasks. Over four pairs of
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Table 3. Results of ablation study.

Metric HR@2 HR@5 NDCG@5 HR@2 HR@5 NDCG@5

Variants Amazon-Movie Amazon-Music

w/o.g 0.1459 0.2011 0.1620 0.1495 0.2106 0.1704

w/o.cl 0.1609 0.2213 0.1838 0.1740 0.2353 0.2165

w/o.dt 0.2357 0.3410 0.2630 0.3150 0.4647 0.3471

DCCDR 0.2588 0.3763 0.2854 0.3297 0.4712 0.3590

tasks, the average performance improvement is 15.2%, 13.5%, 11.5%, and 9.5%,
demonstrating the effectiveness of our design.

5.3 Ablation Study (RQ2)

We conduct an ablation study to compare DCCDR with three variants to eval-
uate the effectiveness of each designed module in DCCDR. w/o.srg replaces the
separate representation generation component with two initialized embeddings
for domain-invariant and domain-specific representations for each domain. w/o.g
replaces LightGCN in the representation enrichment component with matrix fac-
torization (MF). w/o.cl removes the contrastive learning objective from the joint
loss (i.e. β = 0). The outcomes of the experiments are shown in Table 3.

We can see that without GNNs leveraging multi-hop connections in graphs,
w/o.g performs the poorest, with an average drop of 49.32%. This demonstrates
the importance of modeling high-order relationships to enrich user and item rep-
resentations. The recommendation performance of w/o.cl decreases by 41.93% on
average, which demonstrates contrastive learning helps share information across
domains and learn more informative disentangled representations. The drop of
w/o.dt (i.e. 1.38–9.38%) demonstrates the importance of separating domain-
invariant and domain-specific representations. Our DCCDR greatly outperforms
all variants in terms of HR@2, HR@5, and NDCG@5, indicating each designed
component truly contributes to performance improvement.

5.4 Impact of Hyper-parameter Settings (RQ3)

Impact of the weight β of LCL. We first investigate the impact of the weight
β of contrastive learning objective LCL. Taking “Amazon-Cell↔Amazon-Elec”
and “Douban-Music↔Douban-Book” as examples, we select {0.0001, 0.0005,
0.001, 0.002, 0.005, 0.01} as β respectively, and show experimental results in
Fig 3. The recommendation performance improves as β increases and peaks at
0.001. Then the recommendation performance decreases as β becomes larger.
We think this is because when β reaches 0.001, it keeps a good balance between
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Fig. 3. Impact of the weight β of LCL.

Fig. 4. Impact of the embedding size d.

BPR loss and contrastive learning objective, which helps learn more informative
representations. Therefore, we set β as 0.001.

Impact of the Embedding Size d. We then investigate the impact of the
dimension of user/item representations. Taking the “Douban-Movie↔ Douban-
Music” task as an example, we range the embedding size within {16, 32, 48,
64, 80, 96} and plot the results in Fig. 4. In the beginning, as the size of the
embeddings increases, both HR@5 and NDCG@5 increase. This may be because
a relatively large size of embeddings helps represent more semantics. The recom-
mendation performance peaks when the dimension reaches 64 and declines when
the size of embeddings is larger than 64. This may be caused by the overfitting
of the model. Therefore, in our experiments, we set the embedding size to 64.

5.5 Visualization (RQ4)

We visualize the disentangled user representations to see if domain-invariant and
domain-specific representations are separate from each other and contain diverse
semantics. In the “Douban-Music↔Douban-Book” task, we randomly select 20
groups of disentangled user representations in both domains hd,A

u , hs,A
u , hd,B

u ,
hs,B
u . Using the t-SNE technique, we project the high-dimensional representa-

tions into 2D space. The visualization results are displayed in Fig. 5, where red
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(a) Douban-Music (b) Douban-Book

Fig. 5. Visualization of disentangled user representations.

represents domain-invariant interest and blue represents domain-specific one.
Distinct shapes (i.e., squares and circles) represent different groups of disen-
tangled user representations. We can see that the clustering centers of domain-
invariant and domain-specific interests are separate, suggesting that interactions
have distinguishable domain-invariant and domain-specific properties. Moreover,
the representations of the same user (i.e., the same shape) are far apart, indi-
cating that our model can disentangle user representations.

6 Conclusion and Future Work

In this paper, we propose DCCDR to disentangle domain-invariant and domain-
specific representations to make them more informative. A separate represen-
tation generation component is designed to generate separate domain-invariant
and domain-specific representations. We design a mutual-information based con-
trastive learning objective to generate supervised signals and enhance represen-
tation informativeness by reducing noise and redundancy. Extensive experiments
demonstrate the effectiveness of our proposed model. Currently, we only disen-
tangle representations based on the interaction graph and the disentanglement
can be applied to other graphs (e.g. social graph). In the future, we will research
more efficient ways to generate disentangled representations based on various
types of information and further improve recommendation performance.
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